MHPE 494: Data Analysis

Alan Schwartz, PhD
Department of Medical Education
Memoona Hasnain, MD, PhD, MHPE
Department of Family Medicine

College of Medicine University of Illinois at Chicago

Welcome!

- Solution in the second sec
- ы Experience in data analysis
- Why this class? What are your expectations and goals?

The Analytic Process

Covered in Research

Design/Grant Writing

- > Formulate research questions,
- > Design study
- > Collect data
- > Record data
- > Check data for problems
- > Explore data for patterns
- > Test hypotheses with the data
- ► Interpret and report results Covered in Writing for Scientific Publication

_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_ _ _			

Monday AM > Introduction > Syllabus ➤ Data Entry > Data Checking > Exploratory Data Analysis Data entry or, "Garbage in, garbage out" Data Entry > Data entry is the process of recording the behavior of research subjects (or other data) in a format that is efficient for: • Understanding the coded responses • Exploring patterns in the data • Conducting statistical analyses • Distributing your data set to others > Data entry is often given low regard, but a little time spent now can save a lot of time

later!

Methods of data entry

- > Direct entry by participants
- > Direct entry from observations
- > Entry via coding sheets
- > Entry to statistical software
- > Entry to spreadsheet software
- > Entry to database software

Data file layout

- Most data files in most statistical software use "standard data layout":
 - Each row represents one subject
 - Each column represents one variable measurement
- Special formats are sometimes used for particular analyses/software
 - Doubly multivariate data (each row is a subject at a given time)
 - Matrix data

"Standard data layout"

Id	Female	YrsOld	GPA

-		
•		
-		

Missing data

- > Data can be missing for many reasons:
 - Random missing responses
 - Drop out in longitudinal studies (censoring)
 - · Systematic failure to respond
 - Structure of research design
- Knowing why data is missing is often the key to deciding how to handle missing data

Missing data

- > Approaches to dealing with missing data:
 - Leave data missing, and exclude that cell or subject from analyses
 - Impute values for missing data (requires a model of how data is missing)
 - Use an analytic technique that incorporates missing data as part of data structure

Naming Variables

- Variables should have both a short name (for the software) and a descriptive name (for reporting)
- > Name for what is measured, not inferred
- Short names should capture something useful about the variable (its scale, its coding)
- > Better names:
 - Q1-Q20, IQ, MALE, IN_TALL, IN_TALLZ
- Worse names:
 - INTEL, SEX, SIZE

_	

Coding Variables

- > Depends on *measurement scale*
 - Nominal, two categories: Name variable for one category and code 1 or 0
 - Nominal, many categories: Use a string coding or meaningful numbers
 - Ordinal: Code ranks as numbers, decide if lower or higher ranks are better
 - Interval/Ratio: Code exact value

Labeling Variable Values

- ➤ For nominal and ordinal variables, *values* should also be labeled unless using string coding.
- Value labels should precise indicate the response to which the value refers.
 - Example: Educational level ordinal variable:
 - 1 = grade school not completed
 - 2 = grade school completed
 - 3 = middle school completed
 - 4 = high school completed
 - 5 = some college
 - 6 = college degree

Error Checking

- > Goal: Identify errors made due to:
 - Faulty data entry
 - Faulty measurement
 - Faulty responses
- > Prior to analyses. Not hypothesis-based

_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_			
_	 	 	
_			
_			

Range checking

- > The first basic check that should be performed on all variables
- > Print out the range (lowest and highest value) of every variable
- Quickly catches common typos involving extra keystrokes

Distribution checking

- ➤ Examining the distribution of variables to insure that they'll be amenable to analysis.
- > Problems to detect include:
 - Floor and ceiling effects
 - · Lack of variance
 - Non romality (including skew and kurtosis)
 - Heteroscedascity (in joint distributions)

Eccentric subjects

- > Patterns of data can suggest that particular subjects are eccentric
 - Subjects may have misunderstood instructions
 - Subjects may understand instructions but use response scale incorrectly
 - Subjects may intentionally misreport (to protect themselves or to subvert the study as they see it)
 - Subjects may actually have different, but coherent views!

-	
-	
-	
-	
-	
•	
-	
•	
•	
•	
-	
-	

Verbal protocols

- Verbal protocols (written or otherwise recorded) can help to distinguish subjects who don't understand from subjects who understand, but feel differently than most others.
 - "What was going through your head while you were doing this?"
 - "How did you decide to response that way?"
 - "Do you have any comments about this study?"
- > Debriefing interviews can be used similarly

Holding subjects out

- If a subject is indeed eccentric, you must decide whether or not to hold the subject out of the analysis. Document these choices.
 - Pros: Data will be cleaner (sample will be more homogenous, less noisy)
 - Cons: Ability to generalize is reduced, bias may be introduced
- If a group of subjects are eccentric in the same way, it's probably better to analyze them as a subgroup, or use individual level techniques.

Cleaning data

- When only a few data points are eccentric, a case can sometimes be made for *cleaning* the data.
 - Example: Subjects were asked to respond on a computer keyboard to money won or lost in a game on a scale from -50 (very unhappy) to 50 (very happy). One subject's ratings were:
 - +\$5 = "10", -\$5 = "-3", -\$20 = "-40", -\$10 = "20"
 - Should the "20" response be changed to "-20"?
- > Document these choices.

Four great SPSS commands

- Transform...Compute: create a new variable computed from other variables.
- > *Transform...Recode*: create a new variable by recoding the values of an existing variable.
- > Data...Select cases: choose cases on which to perform analyses, setting others aside.
- Data...Split file: choose variables that define groups of cases, and run following analyses individually for each group.

Exploratory Data Analysis

- The goal of EDA is to apprehend patterns in data
- > The better you understand your data set, the easier later analyses will be.
- > EDA is not:
 - "data-mining" (an atheoretical look for any significant findings in the data, capitalizing on chance)
 - hypothesis testing (though it may help with this)
 - data presentation (though it does help with this)

EDA Tools: Stem-and-leaf plots

Starting Sala	rv Ste	m – a	and-Leaf Plot
Frequency	Stem		Leaf
1.00	0		å
9.00	0		889
9.00	1		001
22.00	1		2222333
20.00	1		4555555
39.00	1		666677777777
57.00	1		8888888899999999
139.00	2		000000000000000000000000000011111111111
118.00	2		22222222222222233333333333333333333
126.00	2		444444444444444455555555555555555555555
132.00	2		666666666666666666666677777777777777777
98.00	2		8888888888888888999999999999999999
113.00	3		00000000000000000000011111111111111
94.00	3		2222222222222233333333333333
55.00	3		44444444555555555
21.00			6666677
15.00	3		88889
11.00	4		0001
6.00	4		23
2.00	4		4
13.00 Ext			(>=45000)
Stem width:	10000	E	ach leaf: 3 case(s) & denotes fractional leaves.

EDA Tools: Central Tendency

- Measures of central tendency: what one number best summarizes this distribution?
- Most common are mean, median, and mode
- > Others include trimmed means, etc.
- > Example:

 Starting salary (N=1100)

 Mean
 26064.20

 Median
 26000.00

 Mode
 20000

EDA Tools: Variability

- > Measures of variability: how much and in what way do the data vary around their center?
- Most common: standard deviation, variance (sd squared), skew, kurtosis

Starting salary (N=1100)

 Mean
 26064.20

 Std. Deviation
 6967.98

 Variance
 48552771.77

 Skewness
 .488

 Std. Error of Skewness
 .074

 Kurtosis
 1.778

 Std. Error of Kurtosis
 .147

EDA Tools: Norms and percentiles

Percentiles are pieces of the frequency distribution: for what score are x% of the scores below that score. They can be used to set norms.

Starting salary (N=1100)

Percentiles 5 15000.00 25 21000.00 50 26000.00 75 30375.00 95 36595.00

EDA Tools: Graphing

- Graphing puts the inherent power of visual perception to work in finding patterns in data
- > Choice of graph depends on:
 - Number of dependent and independent variables
 - · Measurement scale of variables
 - Goal of visualization (compare groups? seek relationships? identify outliers?)

Types of graphs

- One variable: Frequency histogram, stem and leaf
- > Two variables (independent x dependent):
 - nominal x interval: bar chart
 - interval x nominal: histogram
 - interval x interval: scatter plot
- > Three variables (ind x ind x dep):
 - nominal x nominal x interval: 3d or clustered bar chart
 - nominal x interval x interval: line chart
 - interval x interval x interval: 3d scatter plot
- > Four variables (ind x ind x ind x dep): matrix

Examples

•	

Error bars

- > Most graphs provide measures of central tendency or aggregate response
- > Error bars are a natural way to indicate variability as well. Some common choices to show:
 - 1 standard deviation (when describing populations)
 - 1 standard error of the mean
 - 95% confidence interval
 - 2 standard errors of the mean

Assignment		
> Explore the hyp data, and describe the distribution of each of the variables.		
	-	